Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine—Part I: Influence of Cooling Variation

Author:

Mathison R. M.1,Haldeman C. W.1,Dunn M. G.1

Affiliation:

1. Gas Turbine Laboratory, Ohio State University, 2300 West Case Road, Columbus, OH 43235

Abstract

Heat-flux measurements are presented for a one-and-one-half stage high-pressure turbine operating at design-corrected conditions with modulated cooling flows in the presence of different inlet temperature profiles. Coolant is supplied from a heavily film-cooled vane and the purge cavity (between the rotor disk and the upstream vane) but not from the rotor blades, which are solid metal. Thin-film heat-flux gauges are located on the uncooled blade pressure and suction surface (at multiple span locations), on the blade tip, on the blade platform, and on the disk and vane sides of the purge cavity. These measurements provide a comprehensive picture of the effect of varying cooling flow rates on surface heat transfer to the turbine blade for uniform and radial inlet temperature profiles. Part I of this paper examines the macroscopic influence of varying all cooling flows together, while Part II investigates the individual regions of influence of the vane outer and purge cooling circuits in more detail. The heat-flux gauges are able to track the cooling flow over the suction surface of the airfoil as it wraps upwards along the base of the airfoil for the uniform vane inlet temperature profile. A similar comparison for the radial profile shows the same coolant behavior but with less pronounced changes. From these comparisons, it is clear that cooling impacts each temperature profile similarly. Nearly all of the cooling influence is limited to the blade suction surface, but small changes are observed for the pressure surface. In addition to the cooling study, a novel method of calculating the adiabatic wall temperature is demonstrated. The derived adiabatic wall temperature distribution shows very similar trends to the Stanton number distribution on the blade.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3