Unsteady Heat Transfer and Pressure Measurements on the Airfoils of a Rotating Transonic Turbine With Multiple Cooling Configurations

Author:

Nickol Jeremy B.1,Mathison Randall M.2,Dunn Michael G.2,Liu Jong S.3,Malak Malak F.3

Affiliation:

1. The Ohio State University Gas Turbine Laboratory, 2300 West Case Road, Columbus, OH 43235

2. The Ohio State University Gas Turbine Laboratory, 2300 West Case Road, Columbus, OH 43235 e-mail:

3. Honeywell International, Phoenix, AZ 85034

Abstract

Measurements are presented for a high-pressure transonic turbine stage operating at design-corrected conditions with forward and aft purge flow and blade film cooling in a short-duration blowdown facility. Four different film-cooling configurations are investigated: simple cylindrical-shaped holes, diffusing fan-shaped holes, an advanced-shaped hole, and uncooled blades. A rainbow turbine approach is used so each of the four blade types comprises a wedge of the overall bladed disk and is investigated simultaneously at identical speed and vane exit conditions. Double-sided Kapton heat-flux gauges are installed at midspan on all three film-cooled blade types, and single-sided Pyrex heat-flux gauges are installed on the uncooled blades. Kulite pressure transducers are installed at midspan on cooled blades with round and fan-shaped cooling holes. Experimental results are presented both as time-averaged values and as time-accurate ensemble-averages. In addition, the results of a steady Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD) computation are compared to the time-averaged data. The computational and experimental results show that the cooled blades reduce heat transfer into the blade significantly from the uncooled case, but the overall differences in heat transfer among the three cooling configurations are small. This challenges previous conclusions for simplified geometries that show shaped cooling holes outperforming cylindrical holes by a great margin. It suggests that the more complicated flow physics associated with an airfoil operating in an engine-representative environment reduces the effectiveness of the shaped cooling holes. Time-accurate comparisons provide some insight into the complicated interactions that are driving these flows and make it difficult to characterize cooling benefits.

Funder

Federal Aviation Administration

U.S. Army

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3