Comparison of Thin Film Heat Flux Gauge Technologies Emphasizing Continuous-Duration Operation

Author:

Siroka Shawn1,Berdanier Reid A.2,Thole Karen A.3,Chana Kam4,Haldeman Charles W.5,Anthony Richard J.6

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, 3127 Research Drive, Rm 164, State College, PA 16801

2. Department of Mechanical Engineering, The Pennsylvania State University, 3127 Research Drive, State College, PA 16801

3. Department of Mechanical Engineering, The Pennsylvania State University, 136 Reber Building, University Park, PA 16802

4. Engineering Science, University of Oxford, Southwell Building, Parks Road, Oxford, OX1 3PJ

5. Pratt & Whitney, 400 Main Street, East Hartford, CT 06108

6. Air Force Research Lab, 1950 Fifth Street, WPAFB, OH 45433

Abstract

Abstract Thin-film heat flux gauges (HFGs) have been used for decades to measure surface temperatures and heat flux in test turbines with the majority being used in facilities that are short-duration. These gauges are typically composed of two resistive temperature devices deposited on opposing sides of a dielectric. However, because these sensors have been traditionally applied for measurements in transient-type facilities, the challenges facing adaptation of this technology for a steady facility warrant investigation. These challenges are highlighted, and the solutions are presented throughout the paper. This paper describes the nanofabrication process for heat flux gauges and a new calibration method to address the potential deterioration of gauges over long runtimes in continuous-duration facilities. Because the primary uncertainty of these sensors arises from the ambiguity of the thermal properties, the emphasis is placed on the property determination. Also, this paper presents a discussion on the use of impulse response theory to process the data showing the feasibility of the method for steady-duration facilities after an initial settling time. The latter portion of the paper focuses on comparing well-established heat flux gauges developed for short-duration turbine test facilities to recently developed gauges fabricated using modern nanofabrication techniques for a continuous turbine test facility. The gauges were compared using the test case of an impinging jet over a range of Reynolds numbers. The comparison between the PSU gauge and the reference device indicated agreement within 14%, and similar results were achieved through comparison with established sensors from partner institutions.

Funder

Pratt & Whitney

U.S. Department of Energy

National Energy Technology Laboratory

Publisher

ASME International

Subject

Mechanical Engineering

Reference51 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3