Affiliation:
1. Institute of Machine Design and Hydraulic Drives, Johannes Kepler University, Altenbergerstr. 69, Linz 4040, Austria e-mail:
Abstract
Check valve dynamics plays an important role in many fluid systems, such as in compressors, hydraulic pumps, and hydraulic switching converters. Plate type check valves are a frequently employed valve type in dynamically challenging cases. Despite the relevancy of plate valve dynamics, only few exhaustive works can be found in the literature, focusing on the behavior of hydraulic check valves for high-frequency applications. This paper presents an in-depth characterization of a plate valve designed as rectifier of a high-frequency oscillation pump working at 300 Hz. The aim is to identify a sufficiently simple mathematical model, which permits to optimize the design of the valve for the considered application. The paper analyses the different phenomena contributing to the dynamics of such a valve and presents the results of simulation and experimental activity. The results show how small details in the design and manufacturing of those valves (namely, the contact surfaces) have important consequences on the dynamics of the pump system. In general, a good agreement between model and reality is achieved.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Reference23 articles.
1. Design and Testing of Piezoelectric-Hydraulic Actuators;Proc. SPIE,2003
2. Design and Development of a High Pumping Frequency Piezoelectric Hydraulic Hybrid Actuator;J. Intell. Mater. Syst. Struct.,2003
3. Design, Analysis, Fabrication, and Testing of a Novel Piezoelectric Pump,2007
4. Walters, T., 2008, “Development of a Smart Material Electrohydrostatic Actuator Considering Rectification Valve Dynamics and In Situ Valve Characterization,” Master's thesis, The Ohio State University, Columbus, OH.https://etd.ohiolink.edu/!etd.send_file?accession=osu1211996027&disposition=inline
5. Design of a Piezoelectric-Hydraulic Pump With Active Valves;J. Intell. Mater. Syst. Struct.,2004
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献