Design and testing of a high power piezo pump for hydraulic actuation

Author:

Sell Nathan1ORCID,Feehally Tom1ORCID,Plummer Andrew1ORCID,Wilson Peter1,du Bois Jonathan1,Johnston Nigel1,Roesner Jens1,De Bartolomeis Andrea1,Love Tom2

Affiliation:

1. University of Bath, Bath, UK

2. Safran Landing Systems, Gloucester, Gloucestershire, UK

Abstract

Traditional valve-controlled hydraulic cylinders are usually very inefficient due to power loss through the control valve. An efficient alternative architecture is to distribute power electrically rather than hydraulically to a group of cylinders and drive each cylinder via individual servomotor-driven pumps. This arrangement is called electrohydrostatic actuation. Such actuators are currently available for power ratings of several hundred watts or greater, but not in the sub-100 W range. This paper details the design, simulation and testing of a piezopump which is intended to address this gap. The motivation is for aerospace applications, and in particular accessory actuators used in the landing gear system. The 10–100 W range is a high-power output for a piezopump, and to achieve this a novel design using disc-style reed valves was developed to allow pumping frequencies above 1 kHz. These high frequencies necessitated the development of custom power electronics capable of delivering 950 V peak-peak sine wave excitation to a largely capacitive load. Experimental results show that the piezopump is capable of delivering over 30 W of hydraulic power, and at no-load can deliver up to 2 L/min of flow at 1250 Hz. Future development includes a transition to multi-cylinder pumps, and improved reed-valve modelling to improve the accuracy of simulated performance.

Funder

Innovate UK

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3