Performance Improvement of a Two-Stage Proportional Valve With Internal Hydraulic Position Feedback

Author:

Wang He1,Wang Xiaohu1,Huang Jiahai1,Quan Long1

Affiliation:

1. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Abstract The present research concentrates on the performance improvement of a two-stage proportional valve with internal hydraulic position feedback which is named as the Valvistor valve. In this paper, the performance constraint of this valve is identified and a novel electronic closed-loop control strategy with an integral-separation fuzzy proportional-integral-derivative controller is proposed to improve the valve performance, including the static characteristics and the dynamic characteristics. The results show that in the Valvistor valve, the comparison point and the feedback loop for the internal hydraulic position feedback is only in the main stage, while the input is in the pilot stage. This leads to the poor performance of this valve. The control strategy is very effective and the performance of the Valvistor valve is improved. With the control strategy, the error of the poppet displacement is reduced from 4.9% to 2.1% by adjusting the spool displacement in the pilot stage in real-time and the flow error is reduced from 5.3% to 2.3%. The dead zone of the poppet displacement and the flow is eliminated. The hysteresis is reduced from 5.3% to 2.6% and the linearity is improved. The overshoot is reduced from 0.06 to 0.02 mm and the settling time is reduced from 0.5 to 0.2 s. Moreover, the bandwidth is increased from 8 to 16 Hz.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3