An Efficient Workflow for Production Allocation During Water Flooding

Author:

Azamipour Vahid1,Assareh Mehdi1,Dehghani Mohammad Reza1,Mittermeir Georg M.2

Affiliation:

1. School of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran e-mail:

2. Heinemann Consulting, Hauptplatz 13, Leoben 8700, Austria e-mail:

Abstract

This paper presents an efficient production optimization scheme for an oil reservoir undergoing water injection by optimizing the production rate for each well. In this approach, an adaptive version of simulated annealing (ASA) is used in two steps. The optimization variables updating in the first stage is associated with a coarse grid model. In the second step, the fine grid model is used to provide more details in final solution search. The proposed method is formulated as a constrained optimization problem defining a desired objective function and a set of existing field/facility constraints. The use of polytope in the ASA ensures the best solution in each iteration. The objective function is based on net present value (NPV). The initial oil production rates for each well come from capacity and property of each well. The coarse grid block model is generated based on average horizon permeability. The proposed optimization workflow was implemented for a field sector model. The results showed that the improved rates optimize the total oil production. The optimization of oil production rates and total water injection rate leads to increase in the total oil production from 315.616 MSm3 (our initial guess) to 440.184 MSm3, and the recovery factor is increased to 26.37%; however, the initial rates are much higher than the optimized rates. Beside this, the recovery factor of optimized production schedule with optimized total injection rate is 3.26% larger than the initial production schedule with optimized total water injection rate.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference44 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3