Smart Well Pattern Optimization Using Gradient Algorithm

Author:

Zhang Liming1,Zhang Kai2,Chen Yuxue3,Li Meng4,Yao Jun1,Li Lixin1,Lee JungIn5

Affiliation:

1. Petroleum Engineering Department, China University of Petroleum, 66 Changjiang West Road, Qingdao, Shandong 266555, China

2. Petroleum Engineering Department, China University of Petroleum, 66 Changjiang West Road, Qingdao, Shandong 266555, China e-mail: .

3. Shandong Kerui Holding Group Co., Ltd., Dongying, Shandong 257000, China

4. Mechanical and Industrial Engineering Department, Louisiana State University, 2508 Patrick Taylor Hall, Baton Rouge, LA 70803

5. China University of Petroleum, 66 Changjiang West Road, Qingdao, Shandong 266555, China

Abstract

For a long time, well pattern optimization mainly relies on human experience, numerical simulations are used to test different development plans and then a preferred program is chosen for field implementation. However, this kind of method cannot provide suitable optimal well pattern layout for different geological reservoirs. In recent years, more attentions have been paid to propose well placement theories combining optimization algorithm with reservoir simulation. But these theories are mostly applied in a situation with a small amount of wells. For numerous wells in a large-scale reservoir, it is of great importance to pursue the optimal well pattern in order to obtain maximum economic benefits. The idea in this paper is originated from the idea presented by Onwunalu and Durlofsky (2011, “A New Well-Pattern-Optimization Procedure for Large-Scale Field Development,” SPE J., 16(3), pp. 594-607), which focuses on well pattern optimization, and the innovations are as follows: (1) Combine well pattern variation with production control to get the optimal overall development plan. (2) Rechoose and simplify the optimization variables, deduce the new generation process of well pattern, and use perturbation gradient to solve mathematical model in order to ensure efficiency and accuracy of final results. (3) Constrain optimization variables by log-transformation method. (4) Boundary wells are reserved by shifting into boundary artificially to avoid abrupt change of objective function which leads to a nonoptimal result due to gradient discontinuity at reservoir edge. The method is illustrated by examples of homogeneous and heterogeneous reservoirs. For homogeneous reservoir, perturbation gradient algorithm yields a quite satisfied result. Meanwhile, heterogeneous reservoir tests realize optimization of various well patterns and indicate that gradient algorithm converges faster than particle swarm optimization (PSO).

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3