Affiliation:
1. Southeast University Department of Port, Waterway and Coastal Engineering, School of Transportation, , Nanjing 211189 , China
Abstract
Abstract
The ship waves and related hydrodynamics over a sloping bed are investigated numerically in this paper, and we aim to clarify the characteristics of ship wave deformation and its hydrodynamic effects. Laboratory experiments are performed with a self-propelled ship model to produce various wave conditions over a sloping bed in the water flume, providing the datasets for validation works of numerical simulations. With the implementation of model sensitivity analysis, numerical calculations of ship-induced waves and flow velocities are completed using the non-hydrostatic model in XBeach and compared against experimental measurements. The results show that the model is not only able to calculate primary and secondary waves well, but also the ship-induced near-bed velocity when ship waves are prominent in the water flume. Further numerical investigations of ship wave transformation and associated hydrodynamic effects are conducted over a sloping bed under different ship speed conditions. The ship wave height and run-up variations along the cross-shore transect clearly indicate the wave energy dissipation due to breaking and bottom friction. The ship-induced flow velocities are found to be mainly contributed by the low-frequency primary waves in our numerical experiments.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Ocean Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献