A Numerical Study on the Effects of Ship-Generated Waves on a Moored Ship in Restricted Waterways Considering Initial Acceleration Process

Author:

Zheng Ziqiang1,Zou Lu12,Zou Zaojian12ORCID

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In order to develop a reliable numerical method to investigate the effects of ship-generated waves on a moored ship in restricted waterways, this paper takes the MASHCON2022 benchmark model test case as the study object and simulates the whole process of a ship passing a moored ship by using the unsteady Reynolds-Averaged Navier-Stokes (URANS) method coupled with the dynamic overset mesh technique. The initial acceleration process of the passing ship before approaching the moored ship is considered in the numerical simulations to reproduce the benchmark model tests more realistically. The numerical simulations with four acceleration modes are conducted. The comparisons among the numerical results and the test data verify that the prediction accuracy considering the acceleration process is obviously higher than that without the acceleration process, especially for the solitary wave system, and the results based on the linear acceleration agree with the test data best. The flow field results indicate that the impacts of the solitary wave system and the primary wave system on the moored ship are different: the solitary wave system induces significant positive pressures on the hull, while the primary wave system leads to remarkable negative pressures; both result in pronounced attitude variations of the moored ship, but the hydrodynamic forces and moments affected by the primary wave system are more pronounced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A numerical investigation on ship-ship overtaking interactions in confined waterways;IOP Conference Series: Materials Science and Engineering;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3