Optimal Design of Thermo-Compression Bonding for Advanced Packaging System Under Uncertainty

Author:

Hwang Sungkun1,Choi Seung-Kyum1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

Abstract As the trend of miniaturization of electronic components has grown, demands for advanced microelectronics packaging development have also increased. At the same time, however, this trend raises concerns of unreliable assembly processes that are caused by defective packaging interconnections. In particular, the defects can be induced by non-coplanarity and unpredictable structural deformation of interconnections. When a slope of the die exceeds a certain degree, connectivity between components in the package may fail, which results in warpage or electrical power loss. To control this issue, thermo-compression bonding has been developed to globally apply heat and pressure into the die while the substrate is maintained at a low stage temperature. Therefore, in order to effectively handle these issues, strongly coupled thermal and structural analysis is inevitable. In this research, a simulation-based optimal design of thermo-compression bonding is developed to achieve better packaging reliability in the time transient domain. The proposed framework clearly demonstrates how the multivariate uncertain parameters can be generated. Also, it suggests how the multivariate uncertainty can be propagated through the classification approach, i.e., artificial neural network. The classification approach is then utilized to estimate the reliability of the system. The efficacy of the proposed framework is demonstrated with a practical example of an advanced packaging system which is utilized in actual commercial products. Ultimately, this study demonstrates how the strong coupling optimization method can be utilized in the actual packaging system.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3