Affiliation:
1. Department of Mechanical Engineering,Texas A&M University, College Station, TX 77843
Abstract
The separation and reattachment of suction surface boundary layer in a low pressure turbine is characterized using large-eddy simulation at Ress = 69000 based on inlet velocity and suction surface length. Favorable comparisons are drawn with experiments using a high pass filtered Smagorinsky model for sub-grid scales. The onset of time mean separation is at s/so = 0.61 and reattachment at s/so = 0.81, extending over 20% of the suction surface. The boundary layer is convectively unstable with a maximum reverse flow velocity of about 13% of freestream. The breakdown to turbulence occurs over a very short distance of suction surface and is followed by reattachment. Turbulence near the bubble is further characterized using anisotropy invariant mapping and time orthogonal decomposition diagnostics. Particularly the vortex shedding and shear layer flapping phenomena are addressed. On the suction side, dominant hairpin structures near the transitional and turbulent flow regime are observed. The hairpin vortices are carried by the freestream even downstream of the trailing edge of the blade with a possibility of reaching the next stage. Longitudinal streaks that evolve from the breakdown of hairpin vortices formed near the leading edge are observed on the pressure surface.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献