Affiliation:
1. Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontaria K1S 5B6, Canada
Abstract
Through numerical simulations, this paper examines the nature of instability mechanisms leading to transition in separation bubbles. The results of two direct numerical simulations are presented in which separation of a laminar boundary layer occurs over a flat surface in the presence of an adverse pressure gradient. The primary difference in the flow conditions between the two simulations is the level of freestream turbulence with intensities of 0.1% and 1.45% at separation. In the first part of the paper, transition under a low-disturbance environment is examined, and the development of the Kelvin–Helmholtz instability in the separated shear layer is compared to the well-established instability characteristics of free shear layers. The study examines the role of the velocity-profile shape on the instability characteristics and the nature of the large-scale vortical structures shed downstream of the bubble. The second part of the paper examines transition in a high-disturbance environment, where the above-mentioned mechanism is bypassed as a result of elevated-freestream turbulence. Filtering of the freestream turbulence into the laminar boundary layer results in streamwise streaks, which provide conditions under which turbulent spots are produced in the separated shear layer, grow, and then merge to form a turbulent boundary layer. The results allow identification of the structure of the instability mechanism and the characteristic structure of the resultant turbulent spots. Recovery of the reattached turbulent boundary layer is then examined for both cases. The large-scale flow structures associated with transition are noted to remain coherent far downstream of reattachment, delaying recovery of the turbulent boundary layer to an equilibrium state.
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献