Performance of a Natural Gas Solid Oxide Fuel Cell System With and Without Carbon Capture

Author:

Iyengar Arun K. S.1,Koeppel Brian J.2,Keairns Dale L.3,Woods Mark C.1,Hackett Gregory A.4,Shultz Travis R.5

Affiliation:

1. KeyLogic Systems Inc., Pittsburgh, PA 15236

2. Pacific Northwest National Laboratory, Richland, WA 99352

3. Deloitte Consulting LLP, Pittsburgh, PA 15236-0940

4. National Energy Technology Laboratory, Morgantown, WV 26505

5. National Energy Technology Laboratory, Morgantown, WV 26507-0880

Abstract

Abstract The fuel cell program at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is focused on the development of low-cost, highly efficient, and reliable fossil-fuel-based solid oxide fuel cell (SOFC) power systems that can generate environmentally friendly electric power with at least 90% carbon capture. NETL’s SOFC technology development roadmap is aligned with near-term market opportunities in the distributed generation sector to validate and advance the technology while paving the way for utility-scale natural gas (NG)- and coal-derived synthesis gas-fueled applications via progressively larger system demonstrations. The present study represents a part of a series of system evaluations being carried out at NETL to aid in prioritizing technological advances along research pathways to the realization of utility-scale SOFC systems, a transformational goal of the fuel cell program. In particular, the system performance of utility-scale NG fuel cell (NGFC) systems with and without carbon dioxide (CO2) capture is presented. The NGFC system analyzed features an external auto-thermal reformer (ATR) feeding the fuel to the SOFC system consisting of planar anode-supported SOFC with separated anode and cathode off-gas streams. In systems with CO2 capture, an air separation unit (ASU) is used to provide the oxygen for the ATR and for the combustion of unutilized fuel in the SOFC anode exhaust along with a CO2 purification unit to provide a nearly pure CO2 stream suitable for transport for usage in enhanced oil recovery (EOR) operations or for storage in underground saline formations. Remaining thermal energy in the exhaust gases is recovered in a bottoming steam Rankine cycle while supplying any process heat requirements. A reduced order model (ROM) developed at the Pacific Northwest National Laboratory (PNNL) is used to predict the SOFC performance. The ROM, while being computationally effective for system studies, provides other detailed information about the state of the stack, such as the internal temperature gradient, generally not available from simple performance models often used to represent the SOFC. Such additional information can be important in system optimization studies to preclude operation under off-design conditions that can adversely impact overall system reliability. The NGFC system performance was analyzed by varying salient system parameters, including the percent of internal (to the SOFC module) NG reformation—ranging from 0 to 100%—fuel utilization, and current density. The impact of advances in underlying SOFC technology on electrical performance was also explored.

Funder

National Energy Technology Laboratory

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. Solid Oxide Fuel Cell;NETL—National Energy Technology Laboratory,2018

2. Overview of U.S. Department of Energy Office of Fossil Energy’s Solid Oxide Fuel Cell Program;Vora;ECS Transactions,2017

3. Response Surface Methodology;Khuri;WIREs Comput. Stat.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3