The Impact of Carbon Capture Storage and Utilization on Energy Efficiency, Sustainability, and Production of an Offshore Platform: Thermodynamic and Sensitivity Analyses

Author:

Allahyarzadeh Bidgoli Ali1,Hamidishad Nayereh2,Yanagihara Jurandir Itizo1

Affiliation:

1. Polytechnic School of University of São Paulo Department of Mechanical Engineering, , São Paulo 05508-010 , Brazil

2. University of São Paulo Institute of Mathematics and Statistics, , São Paulo 05508-090 , Brazil

Abstract

Abstract Oil and gas production in FPSOs (floating, production, storage, and offloading) faces a dual challenge: meeting variation in energy demand while decreasing its negative environmental impact. The present article integrates thermodynamic analysis of oil and gas processing plants and screening analysis to determine the most important operational parameters to lower energy demand and increase efficiency and production. Therefore, the main goals of this study are to identify the contribution of the total effect of the operating parameters in an FPSO with CCUS (CO2 capture, utilization, and storage). Twenty-seven thermodynamic and structural design variables are selected as input parameters for the sensitivity analyses. Four machine learning-based screening analysis algorithms such as smooth spline-analysis of variance (SS-ANOVA), PAWN, gradient boosting machine (GBM), and Morris are adapted to achieve the following objectives: (1) overall power consumption of FPSO, (2) CO2 removal efficiency of carbon capture and storage (CCS), (3) power consumption of CCS, and (4) total oil production. The influence of three real crude oil compositions with variations in gas–oil ratio (GOR) and CO2 content is assessed. The combination of thermodynamic and screening analyses showed that the optimal operating pressure parameters of CCS significantly reduce the energy consumption and exergy destruction of the key main and utility plants. Furthermore, the results indicated that total power consumption, CCS efficiency, and CCS power consumption are much more sensitive to the CO2 content of the fluid reservoir than GOR, while the total oil production is influenced only by the GOR content. Finally, for scenarios with high CO2 or GOR content, the effect of design variable interactions is decisive in changing the separation efficiency and/or the compression unit performance.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3