Techno-Economic and Environmental Analysis of a Hybrid Power System Formed From Solid Oxide Fuel Cell, Gas Turbine, and Organic Rankine Cycle

Author:

Yadav Anil Kumar1,Kumar Anil2,Sinha Shailendra1

Affiliation:

1. Institute of Engineering & Technology Department of Mechanical Engineering, , Lucknow 226021, Uttar Pradesh , India

2. Delhi Technological University Department of Mechanical Engineering, , Delhi 110042 , India

Abstract

Abstract Distributed energy technology is an essential pathway for future advancements in the field of energy technology. In the present study, organic Rankine cycle (ORC) is integrated with solid oxide fuel cell (SOFC)-gas turbine (GT) hybrid power system. The conventional metrics employed for assessing the performance of SOFCs, gas turbines, and organic Rankine cycles, such as voltage and gross real efficiencies, have some limitations as indices of merit. Contemporary second law concepts and economic and environmental analysis have been used to enhance hybrid power system evaluation. R1233zd(E) has been selected as the ORC working fluid. The outcomes reveal that, under certain conditions, the present configuration may reach 55.67% energy efficiency and 53.55% exergy efficiency. Economic and environmental analysis shows that the hybrid system's total cost rate and Emissions of CO2 gas (EMI) under design conditions are 36.09 $/h and 355.8 kg/MWh, respectively. Thermodynamic evaluation of present SOFC-GT-ORC configuration shows 11.72% improvement in exergy efficiency compared to hybrid SOFC-GT cycle. Consequently, the hybrid SOFC-GT-ORC system is far better than the hybrid SOFC-GT system. In the future, other ORC fluids like R123, R601a, and R245fa can be used as ORC fluids.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3