Affiliation:
1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840
Abstract
Abstract
The Morton effect (ME) is a thermally induced vibration problem observed in a rotor supported by hydrodynamic bearings. The journal’s synchronous orbiting induces nonuniform viscous heating on its circumference, and the ensuing thermal bow often causes unacceptable vibration levels in the rotor. This paper investigates the influence of the tilting pad journal bearing (TPJB)’s pivot design on the severity and instability speed range of ME vibration. Simulations are conducted with two different types of pivots: cylindrical (CYL) and spherical (SPH), which produce different pad degrees-of-freedom and nonlinear pivot stiffness due to their geometries. The friction between pad and pivot, which only exists with the spherical pivot, is modeled, and its impact on the ME is evaluated. The example rotor model, as obtained from the literature, is single overhung, with experimentally measured excessive vibration and large journal temperature differentials, near 8000 rpm. The bearing and journal are modeled with three-dimensional (3D) finite elements, and the shaft with flexible beam elements for ME simulation. Nonlinear transient simulations are carried out for a wide operating speed range with varying pivot design parameters. Simulation results indicate that the predicted ME instability is sensitive to the pivot shape, pivot flexibility, and pad-pivot friction.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献