A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect

Author:

Tong Xiaomeng1,Palazzolo Alan2,Suh Junho3

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:

2. Professor Fellow ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:

3. Mem. ASME School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea e-mail:

Abstract

The Morton effect (ME) is a thermally induced instability problem that most commonly appears in rotating shafts with large overhung masses and supported by fluid-film bearings. The time-varying thermal bow, due to the asymmetric journal temperature distribution, may cause intolerable synchronous vibrations that exhibit a hysteresis behavior with respect to rotor speed. First discovered by Morton in the 1970s and theoretically analyzed by Keogh and Morton in the 1990s, the ME is still not fully understood by industry and academia experts. Traditional rotordynamic analysis generally fails to predict the potential existence of ME-induced instability in the design stage or troubleshooting process, and the induced excessive rotor vibrations cannot be effectively suppressed through conventional balancing, due to the continuous fluctuation of vibration amplitude and phase angle. In recent years, a fast growing number of case studies of ME have sparked academic interest in analyzing the causes and solutions of ME, and engineers have moved from an initial trial and error approach to more research inspired modification of the rotor and bearing. To facilitate the understanding of ME, the current review is intended to give the most comprehensive summary of ME in terms of symptoms, causes, prediction theories, and solutions. Published case studies in the past are also analyzed for ME diagnosis based on both the conventional view of critical speed, separation margin (SM), and the more recent view of the rotor thermal bow and instability speed band shifting. Although no universal solutions of ME are reported academically and industrially, recommendations to help avoid the ME are proposed based on both theoretical predictions and case studies.

Publisher

ASME International

Subject

Mechanical Engineering

Reference64 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3