Accessible Region and Synthesis of Robot Arms

Author:

Tsai Y. C.1,Soni A. H.1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Okla. 74074

Abstract

The present paper deals with the study of determining accessible region for two and three-link robotic arms with pin-joints. Based on the derivation of the loci-curves traced by a two-link robotic arm, design charts are developed. Such design charts are utilized in determining the accessible regions of a three-link robotic arm. Following the analysis of the accessible regions of two and three-link robotic arms, the paper presents a synthesis procedure to synthesize two and three-link robotic arms. Given a set of end-positions of a two or three-link robot arm, the proposed synthesis procedure will yield the dimensions and the location of the robot arm which will enclose within its accessible region the design points. The same synthesis procedure is proposed to trace a specific planar point-path. The present paper further examines the potential application of the synthesis procedure of two and three-link robotic arms in synthesizing a closed-loop mechanism for point-path generation. The two-link robotic arm is examined for the case where the end positions lie on a fixed circle. This case leads to the synthesis of a four-bar mechanism for a special point-path curve. The synthesis procedure may be extended from the four-bar synthesis to a cam-follower (non-circular-cam) system where the follower is the two link robotic arm. A further extension of this procedure is demonstrated in synthesizing analytically the dual-cam mechanisms derived from the stephenson six-link mechanism. The present investigation examines all three possible cases of dual-cam mechanisms. For special cases, it is demonstrated that such dual-cam mechanism may be degenerated to synthesize a mechanism with one cam pair.

Publisher

ASME International

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3