Affiliation:
1. Carnegie Mellon University
Abstract
Abstract
We present an extensible system for synthesizing and optimizing robot configurations. The system uses a flexible representation for robot configurations based on parameterized modules; this allows us to synthesize mobile and fixed-base robots, including robots with multiple or branching manipulators and free-flying robots. Synthesis of modular robots is also possible with our representation. We use an optimization algorithm based on genetic programming. A distributed architecture is used to spread heavy computational loads across multiple workstations. We take a task-oriented approach to synthesis in which robots are evaluated on a designer-specified task in simulation; flexible planning and control algorithms are thus required so that a wide variety of robots can be evaluated. Our system’s extensibility stems from an object-oriented software architecture that allows new modules, metrics, controllers, and tasks to be easily added. We present two example synthesis tasks: synthesis of a robotic material handler, and synthesis of an antenna pointing system for a mobile robot. We analyze several key issues raised by the experiments and show several important ways in which the system can be extended and improved.
Publisher
American Society of Mechanical Engineers
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献