Designing actuation systems for animatronic figures via globally optimal discrete search

Author:

Huber Simon1,Poranne Roi2,Coros Stelian1

Affiliation:

1. ETH Zürich, Switzerland

2. University of Haifa, Israel

Abstract

We present an algorithmic approach to designing animatronic figures - expressive robotic characters whose movements are driven by a large number of actuators. The input to our design system provides a high-level specification of the space of motions the character should be able to perform. The output consists of a fully functional mechatronic blueprint. We cast the design task as a search problem in a vast combinatorial space of possible solutions. To find an optimal design in this space, we propose an efficient best-first search algorithm that is guided by an admissible heuristic. The objectives guiding the search process demand that the design remains free of singularities and self-collisions at any point in the high-dimensional space of motions the character is expected to be able to execute. To identify worst-case self-collision scenarios for multi degree-of-freedom closed-loop mechanisms, we additionally develop an elegant technique inspired by the concept of adversarial attacks. We demonstrate the efficacy of our approach by creating designs for several animatronic figures of varying complexity.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Design of Robotic Character Kinematics;ACM Transactions on Graphics;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3