Development of a Finite Element Model of the Pediatric Thoracic and Lumbar Spine, Ribcage, and Pelvis With Orthotropic Region-Specific Vertebral Growth

Author:

Balasubramanian Sriram1,D'Andrea Christian R.1,Viraraghavan Girish1,Cahill Patrick J.2

Affiliation:

1. School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104

2. Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104

Abstract

Abstract Finite element (FE) modeling of the spine has increasingly been applied in orthopedic precision-medicine approaches. Previously published FE models of the pediatric spine growth have made simplifications in the geometry of anatomical structures, material properties, and representation of vertebral growth. To address those limitations, a comprehensive FE model of a pediatric (10-year-old) osteo-ligamentous thoracic and lumbar spine (T1-L5 with intervertebral discs (IVDs) and ligaments), ribcage, and pelvis with age- and level-specific ligament properties and orthotropic region-specific vertebral growth was developed and validated. Range of motion (ROM) measures, namely, lateral bending, flexion–extension, and axial rotation, of the current 10 YO FE model were generally within reported ranges of scaled in vitro adult ROM data. Changes in T1-L5 spine height, as well as kyphosis (T2-T12) and lordosis (L1-L5), angles in the current FE model for two years of growth (from ages 10 to 12 years) were within ranges reported from corresponding pediatric clinical data. The use of such comprehensive pediatric FE models can provide clinically relevant insights into normative and pathological biomechanical responses of the spine, and also contribute to the development and optimization of clinical interventions for spine deformities.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3