In vitro coupled motions of the whole human thoracic and lumbar spine with rib cage

Author:

Orbach Mattan R.1ORCID,Mahoney Jonathan2,Bucklen Brandon S.2,Balasubramanian Sriram1ORCID

Affiliation:

1. School of Biomedical Engineering, Science and Health Systems Drexel University Philadelphia Pennsylvania USA

2. Musculoskeletal Education and Research Center A Division of Globus Medical, Inc Audubon Pennsylvania USA

Abstract

AbstractStudy designIn vitro biomechanical study investigating the coupled motions of the whole normative human thoracic spine (TS) and lumbar spine (LS) with rib cage.ObjectiveTo quantify the region‐specific coupled motion patterns and magnitudes of the TS, thoracolumbar junction (TLJ), and LS simultaneously.BackgroundStudying spinal coupled motions is important in understanding the development of complex spinal deformities and providing data for validating computational models. However, coupled motion patterns reported in vitro are controversial, and no quantitative data on region‐specific coupled motions of the whole human TS and LS are available.MethodsPure, unconstrained bending moments of 8 Nm were applied to seven fresh‐frozen human cadaveric TS and LS specimens (mean age: 70.3 ± 11.3 years) with rib cages to elicit flexion‐extension (FE), lateral bending (LB), and axial rotation (AR). During each primary motion, region‐specific rotational range of motion (ROM) data were captured.ResultsNo statistically significant, consistent coupled motion patterns were observed during primary FE. During primary LB, there was significant (p < 0.05) ipsilateral AR in the TS and a general pattern of contralateral coupled AR in the TLJ and LS. There was also a tendency for the TS to extend and the LS to flex. During primary AR, significant coupled LB was ipsilateral in the TS and contralateral in both the TLJ and LS. Significant coupled flexion in the LS was also observed. Coupled LB and AR ROMs were not significantly different between the TS and LS or from one another.ConclusionsThe findings support evidence of consistent coupled motion patterns of the TS and LS during LB and AR. These novel data may serve as reference for computational model validations and future in vitro studies investigating spinal deformities and implants.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3