Patient-specific finite element modeling of scoliotic curve progression using region-specific stress-modulated vertebral growth

Author:

D’Andrea Christian R.ORCID,Samdani Amer F.ORCID,Balasubramanian SriramORCID

Abstract

Abstract Purpose This study describes the creation of patient-specific (PS) osteo-ligamentous finite element (FE) models of the spine, ribcage, and pelvis, simulation of up to three years of region-specific, stress-modulated growth, and validation of simulated curve progression with patient clinical angle measurements. Research Question: Does the inclusion of region-specific, stress-modulated vertebral growth, in addition to scaling based on age, weight, skeletal maturity, and spine flexibility allow for clinically accurate scoliotic curve progression prediction in patient-specific FE models of the spine, ribcage, and pelvis? Methods Frontal, lateral, and lateral bending X-Rays of five AIS patients were obtained for approximately three-year timespans. PS-FE models were generated by morphing a normative template FE model with landmark points obtained from patient X-rays at the initial X-ray timepoint. Vertebral growth behavior and response to stress, as well as model material properties were made patient-specific based on several prognostic factors. Spine curvature angles from the PS–FE models were compared to the corresponding X-ray measurements. Results Average FE model errors were 6.3 ± 4.6°, 12.2 ± 6.6°, 8.9 ± 7.7°, and 5.3 ± 3.4° for thoracic Cobb, lumbar Cobb, kyphosis, and lordosis angles, respectively. Average error in prediction of vertebral wedging at the apex and adjacent levels was 3.2 ± 2.2°. Vertebral column stress ranged from 0.11 MPa in tension to 0.79 MPa in compression. Conclusion Integration of region-specific stress-modulated growth, as well as adjustment of growth and material properties based on patient-specific data yielded clinically useful prediction accuracy while maintaining physiological stress magnitudes. This framework can be further developed for PS surgical simulation.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3