Affiliation:
1. Saint Louis University, St. Louis, MO
Abstract
High lift low pressure turbine airfoils have complex flow features that can require advanced modeling capabilities for accurate flow predictions. These features include separated flows and the transition from laminar to turbulent boundary layers. Recent applications of computational fluid dynamics based on the Reynolds-averaged Navier-Stokes formulation have included modeling for attached and separated flow transition mechanisms in the form of empirical correlations and two- or three-equation eddy viscosity models. This study uses the three-equation model of Walters and Cokljat [1] to simulate the flow around the Pack B and L2F low pressure turbine airfoils in a two-dimensional cascade arrangement at a Reynolds number of 25,000. This model includes a third equation for the development of pre-transitional laminar kinetic energy (LKE), and is an updated version of the Walters and Leylek [2] model. The aft-loaded Pack B has a nominal Zweifel loading coefficient of 1.13, and the front-loaded L2F has a nominal loading coefficient of 1.59. Results show the updated LKE model improves predicted accuracy of pressure coefficient and velocity profiles over its previous version as well as two-equation RANS models developed for separated and transitional flows. Transition onset behavior also compares favorably with experiment. However, the current model is not found suitable for wake total pressure loss predictions in two-dimensional simulations at extremely low Reynolds numbers due to the predicted coherency of suction side vortices generated in the separated shear layers which cause a local gain in wake total pressure.
Publisher
American Society of Mechanical Engineers
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献