Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines

Author:

Akolekar H. D.1,Weatheritt J.2,Hutchins N.2,Sandberg R. D.2,Laskowski G.3,Michelassi V.4

Affiliation:

1. Department of Mechanical Engineering, University of Melbourne, Parkville 3010, VIC, Australia e-mail:

2. Department of Mechanical Engineering, University of Melbourne, Parkville 3010, VIC, Australia

3. General Electric Aviation, Lynn, MA 01905 e-mail:

4. Baker Hughes, a GE Company, Florence 50127, Italy e-mail:

Abstract

Nonlinear turbulence closures were developed that improve the prediction accuracy of wake mixing in low-pressure turbine (LPT) flows. First, Reynolds-averaged Navier–Stokes (RANS) calculations using five linear turbulence closures were performed for the T106A LPT profile at isentropic exit Reynolds numbers 60,000 and 100,000. None of these RANS models were able to accurately reproduce wake loss profiles, a crucial parameter in LPT design, from direct numerical simulation (DNS) reference data. However, the recently proposed kv2¯ω transition model was found to produce the best agreement with DNS data in terms of blade loading and boundary layer behavior and thus was selected as baseline model for turbulence closure development. Analysis of the DNS data revealed that the linear stress–strain coupling constitutes one of the main model form errors. Hence, a gene-expression programming (GEP) based machine-learning technique was applied to the high-fidelity DNS data to train nonlinear explicit algebraic Reynolds stress models (EARSM), using different training regions. The trained models were first assessed in an a priori sense (without running any RANS calculations) and showed much improved alignment of the trained models in the region of training. Additional RANS calculations were then performed using the trained models. Importantly, to assess their robustness, the trained models were tested both on the cases they were trained for and on testing, i.e., previously not seen, cases with different flow features. The developed models improved prediction of the Reynolds stress, turbulent kinetic energy (TKE) production, wake-loss profiles, and wake maturity, across all cases.

Funder

General Electric

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3