Machine-Learnt Turbulence Closures for Low-Pressure Turbines With Unsteady Inflow Conditions
Author:
Affiliation:
1. Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
2. Baker Hughes, a GE Company, Florence 50127, Italy
3. General Electric Aviation, Lynn, MA 01905
Abstract
Funder
General Electric
Government of Western Australia
Publisher
ASME International
Subject
Mechanical Engineering
Link
http://asmedigitalcollection.asme.org/turbomachinery/article-pdf/doi/10.1115/1.4043907/6433432/turbo_141_10_101009.pdf
Reference41 articles.
1. Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade;Schobeiri,2004
2. High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses;Michelassi;J. Turbomach.,2016
3. Blade Row Interaction in a Multistage Low-Pressure Turbine;Arndt;J. Turbomach.,1993
4. The Transition Mechanism of Highly-Loaded LP Turbine Blades;Stieger;ASME J. Turbomach.,2004
5. The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage;Stieger;J. Turbomach.,2005
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improvements in the Prediction of Steady and Unsteady Transition and Mixing in Low-Pressure Turbines by Means of Machine-Learnt Closures;Journal of Turbomachinery;2024-01-16
2. An iterative data-driven turbulence modeling framework based on Reynolds stress representation;Theoretical and Applied Mechanics Letters;2022-09
3. Machine-learning for turbulence and heat-flux model development: A review of challenges associated with distinct physical phenomena and progress to date;International Journal of Heat and Fluid Flow;2022-06
4. Machine Learning Methods in CFD for Turbomachinery: A Review;International Journal of Turbomachinery, Propulsion and Power;2022-05-13
5. Machine Learning for the Development of Data-Driven Turbulence Closures in Coolant Systems;Journal of Turbomachinery;2022-03-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3