Machine-Learnt Turbulence Closures for Low-Pressure Turbines With Unsteady Inflow Conditions

Author:

Akolekar H. D.1,Sandberg R. D.1,Hutchins N.1,Michelassi V.2,Laskowski G.3

Affiliation:

1. Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia

2. Baker Hughes, a GE Company, Florence 50127, Italy

3. General Electric Aviation, Lynn, MA 01905

Abstract

Abstract The design of low-pressure turbines (LPTs) must account for the losses generated by the unsteady interaction with the upstream blade row. The estimation of such unsteady wake-induced losses requires the accurate prediction of the incoming wake dynamics and decay. Existing linear turbulence closures (stress–strain relationships), however, do not offer an accurate prediction of the wake mixing. Therefore, machine-learnt, nonlinear turbulence closures (models) have been developed for LPT flows with unsteady inflow conditions using a zonal-based model development approach, with an aim to enhance the wake mixing prediction for unsteady Reynolds-averaged Navier–Stokes calculations. High-fidelity time-averaged and phase-lock averaged data at a realistic isentropic Reynolds number and two reduced frequencies, i.e., with discrete incoming wakes and with wake “fogging,” have been used as reference data for a machine learning algorithm based on gene expression programing to develop models. Models developed via phase-lock averaged data were able to capture the effect of certain prominent physical phenomena in LPTs such as wake–wake interactions, whereas models based on the time-averaged data could not. Correlations with the flow physics lead to a set of models that can effectively enhance the wake mixing prediction across the entire LPT domain for both cases. Based on a newly developed error metric, the developed models have reduced the a priori error over the Boussinesq approximation on average by 45%. This study thus aids blade designers in selecting the appropriate nonlinear closures capable of mimicking the physical mechanisms responsible for loss generation.

Funder

General Electric

Government of Western Australia

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3