The Interactions of In-Cylinder Flow and Fuel Spray in a Gasoline Direct Injection Engine With Variable Tumble

Author:

Zhang Xianhui1,Wang Tianyou1,Jia Ming2,Li Wei1,Cui Lei1,Zhang Xigang1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Weijin Road 92, Tianjin City 300072, China e-mail:

2. School of Energy and Power Engineering, Dalian University of Technology, Dalian City 116024, China e-mail:

Abstract

Particle image velocimetry (PIV) system was used to measure the tumble structure of the in-cylinder airflow in a four-valve optical gasoline direct injection (GDI) engine. The tumble ratio was controlled by a flap in the manifold and a baffle in the intake port. With proper orthogonal decomposition (POD) method, the velocity field was decomposed into four parts, i.e., the mean, coherent, transitional, and turbulent. The effect of tumble motion on the cycle-to-cycle variation (CCV) of airflow and spray was investigated by calculating the shear strain vorticity. The results indicate that the flow structure can be effectively changed through the combination of flap and baffle by forming a single large-scale tumble flow with the tumble ratio three times higher than the original one. According to POD analysis, it is revealed that the large-scale strong tumble motion leads to the energy occupation ratio of the mean part greatly increase by up to 30%, while the energy transferred to the coherent part is reduced. The above process also decreases the CCV of the coherent part by 50%; thus, the CCV of the whole airflow in the cylinder can be suppressed. A single large-scale tumble increases the maximum shear strain rate up to 2400 s−1. Meanwhile, the maximum vorticity increases to about 6000 s−1 by rolling up of the airflow. The contact area between spray droplets and air becomes larger, and the momentum exchanges between them contribute to wider sprays cone angle and shorter penetration distance when the flap is closed. The statistics of the measurements illustrate that a single large-scale tumble can promote the formation of homogeneous mixture and reduce the fluctuation between multicycles.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference24 articles.

1. Investigations of Mixture Formation and Combustion in Gasoline Direct Injection Engines,2001

2. Cycle-to-Cycle Variation Analysis of In-Cylinder Flow in a Gasoline Engine With Variable Valve Lift;Exp. Fluids,2012

3. A Review of Mixture Preparation and Combustion Control Strategies for SIDI Gasoline Engines,1997

4. In-Cylinder Flow and Fuel Spray Interactions in a Stratified Spray-Guided Gasoline Engine Investigated by High-Speed Laser Imaging Techniques;Flow Turbul. Combust.,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3