Valve Vibration Induced Intake Air Flow Dynamics Analysis Using Near Valve Particle Image Velocimetry

Author:

Shi Fenghao1,Liu Mengqi1,Hung David L. S.1,Li Xuesong2,Xu Min2

Affiliation:

1. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China

2. School of Mechanical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China

Abstract

Abstract The transient dynamics of air flow running through the moving intake valve gaps in combustion cylinders is crucial to the performance of spark-ignition direct-injection engines. However, research on the air flow behavior in the vicinity of valve exits is still limited. In this work, transient air flow characteristics of a custom-designed dual-valve system under the operating conditions of a fixed valve lift and a vibrating valve lift at two frequencies are experimentally investigated. The velocity vector field measured using planar particle image velocimetry (PIV) is first analyzed in time domain based on temporal mean and root-mean-square (RMS) values. Comparison of temporal mean flow fields reveals the difference in flow pattern while RMS represents the variation of intake air jet velocity along the inlet path of the vibration-affected jet. Instantaneous snapshots provide direct analysis of the valve vibration-induced intake air jet behavior. Furthermore, investigation in frequency domain extends insights into the dominant spectral components of flow structures. Fast Fourier transform (FFT) applied to every vector on the velocity field yields a vibration frequency affected zone (VFAZ), indicating the regions where the effect of valve vibration is significant. By employing dynamic mode decomposition (DMD) method, the spatio-temporal PIV results are decomposed into modes with specific frequencies. Reconstructed flow field using modes with the valve operating frequency visually unveils a cyclic vortex structure near the valve exit. In summary, this study elucidates the mechanism of near-valve intake air flow impingement and interaction behavior induced by the valve vibrating motion.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3