Electroplastic Drilling of Low- and High-Strength Steels

Author:

Ruszkiewicz Brandt J.1,Gendreau Elizabeth2,Niaki Farbod Akhavan1,Mears Laine1

Affiliation:

1. International Center for Automotive Research, Clemson University, Greenville, SC 29607 e-mail:

2. Department of Mechanical Engineering, Clemson University, Clemson, SC 29607 e-mail:

Abstract

When postforming machining operations are required on high-strength structural components, tool life becomes a costly issue, often requiring external softening via techniques such as laser assistance for press-hardened steel components. Electrically assisted manufacturing (EAM) uses electricity during material removal processes to reduce cutting loads through thermal softening. This paper evaluates the effect of electric current on a drilling process, termed electroplastic drilling, through the metrics of axial force, and workpiece temperature when machining mild low carbon steel (1008CR steel) and an advanced high strength press hardened steel. A design of experiment (DoE) is conducted on 1008CR steel to determine primary process parameter effects; it is found that electricity can reduce cutting loads at the cost of an increased workpiece temperature. The knowledge generated from the DoE is applied to the advanced high strength steel to evaluate cutting force reduction, process time savings, and tool life improvement at elevated feedrates. It is found that force can be reduced by 50% in high feedrates without observing catastrophic tool failure for up to ten cuts, while tool failure occurs in only a single cut for the no-current condition. Finally, the limitations of the developed model in electroplastic drilling are discussed along with future suggestions for industrialization of the method.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electroplasticity effects: from mechanism to application;The International Journal of Advanced Manufacturing Technology;2023-09-08

2. Effect of pulse current parameters on electroplastically assisted dry cutting performance of W93NiFe alloy;The International Journal of Advanced Manufacturing Technology;2023-01-03

3. The different electroplastic effects of cutting directions during the turning process of Ti-6Al-4V titanium alloy;International Journal of Materials and Product Technology;2023

4. Softening behavior of Al-Zn-Mg alloys with different strengthening mechanisms in a coupled field;Materials Science and Engineering: A;2020-01

5. Electropulsing-Induced α to β Phase Transformation of Ti–6Al–4V;Journal of Manufacturing Science and Engineering;2019-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3