Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability

Author:

Jones Joshua J.1,Mears Laine1,Roth John T.2

Affiliation:

1. Department of Automotive Engineering, Clemson University, Greenville, SC 29607

2. Mechanical Engineering, Penn State Erie, The Behrend College, Erie, PA 16563

Abstract

Currently, the automotive and aircraft industries are considering increasing the use of magnesium within their products due to its favorable strength-to-weight characteristics. However, the implementation of this material is limited as a result of its formability. Partially addressing this issue, previous research has shown that electrically-assisted forming (EAF) improves the tensile formability of magnesium sheet metal. While these results are highly beneficial toward fabricating the skin of the vehicle, a technique for allowing the use of magnesium alloys in the production of the structural/mechanical components is also desirable. Given the influence that EAF has already exhibited on tensile deformation, the research herein focuses on incorporating this technique within compressive operations. The potential benefit of using EAF on compressive processes has been demonstrated in related research where other materials, such as titanium and aluminum, have shown improved compressive behavior. Therefore, this research endeavors to amalgamate these findings to Mg AZ31B-O, which is traditionally hard to forge. As such, to demonstrate the effects of EAF on this alloy, two series of tests were performed. First, the sensitivity of the alloy to the EAF process was determined by varying the current density and platen speed during an upsetting process (flat dies). Then, the ability to utilize impression (shaped) dies was examined. Through this study, it was shown for the first time that the EAF process increases the forgeability of this magnesium alloy through improvements such as decreased machine force requirements and increased achievable deformation. Additionally, the ability to form the desired final specimen geometry was achieved. Furthermore, this work also showed that this alloy is sensitive to any deformation rate changes when utilizing the EAF process. Last, a threshold current density was noted for this material where significant forgeability improvements could be realized once exceeded.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference24 articles.

1. Applied Voltage and the Plastic Properties of “Brittle” Rock Salt;Machlin;J. Appl. Phys.

2. Electromechanical Effects in Metals;Troitskii;Pis’ma Zh. Tekh. Fiz.

3. The Electroplastic Effect;Kilmov;Strength Mater.

4. Effect of Electric Current on the Recrystallization Behavior of Cold Worked Alpha-Ti;Xu;Scr. Metall.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3