Modeling and Quantification of the Electroplastic Effect When Bending Stainless Steel Sheet Metal

Author:

Salandro Wesley A.1,Bunget Cristina1,Mears Laine1

Affiliation:

1. Clemson University, Greenville, SC

Abstract

Automotive manufacturers are continuously striving to meet economic demands by designing and manufacturing more efficient and better performing vehicles. To aid this effort, many manufacturers are using different design strategies such to reduce the overall size/weight of certain automotive components without compromising strength or durability. Stainless steel is a popular material for such uses (i.e. bumpers and fuel tanks) since it possesses both high strength and ductility, and it is relatively light for its strength. However, with current forming processes (e.g., hot working, incremental forming, and superplastic forming), extremely complex components cannot always be easily produced, thus, limiting the potential weight-saving and performance benefits that could be achieved otherwise. Electrically-Assisted Manufacturing (EAM) is an emerging manufacturing technique that has been proven capable of significantly increasing the formability of many automotive alloys, hence the “electroplastic effect”. In this technique, electricity can be applied in many ways (e.g., pulsed, cycled, or continuous) to metals undergoing different types of deformation (e.g., compression, tension, bending). When applied, the electricity lowers the required deformation forces, increases part displacement or elongation, and can reduce or eliminate springback in formed parts. Within this study, the effects of EAM on the bending of 304 Stainless Steel sheet metal will be characterized and modeled for different die widths and electrical flux densities. In previous works, EAM has proven to be highly successful on this particular material. Comparison of 3-point bending force profiles for non-electrical baseline tests and various EAM tests will help to illustrate electricity’s effectiveness. An electroplastic bending coefficient will be introduced and used for modeling an electrically-assisted bending process. Additionally, the springback reductions attained from EAM will be quantified and compared. From this work, a better overall understanding of the effects and benefits of EAM on bending processes will be explained.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electroplastic Effect during Tension and Bending in Duplex Stainless Steel;Materials;2023-05-31

2. Linear Electromechanical Transducer in the Systems of Welded Joints of Electrodynamic Processing;Advances in Environmental Engineering and Green Technologies;2020

3. Electroplastic Drilling of Low- and High-Strength Steels;Journal of Manufacturing Science and Engineering;2018-04-27

4. A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect;Journal of Manufacturing Science and Engineering;2017-09-13

5. Applications of Electrically Assisted Manufacturing;Springer Series in Advanced Manufacturing;2014-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3