Differential Flatness of Slider–Pusher Systems for Constrained Time Optimal Collision Free Path Planning

Author:

Lefebvre Tom1ORCID,De Witte Sander1,Neve Thomas1,Crevecoeur Guillaume1

Affiliation:

1. Department of ElectroMechanical, Systems and Metal Engineering, Ghent University , Technologiepark 131, Ghent 9000, Belgium

Abstract

Abstract In this work, we show that the differential kinematics of slider–pusher systems are differentially flat assuming quasi-static behavior and frictionless contact. Second, we demonstrate that the state trajectories are invariant to time-differential transformations of the path parametrizing coordinate. For one this property allows to impose arbitrary velocity profiles on the slider without impacting the geometry of the state trajectory. This property implies that certain path planning problems may be decomposed approximately into a strictly geometric path planning and an auxiliary throughput speed optimization problem. Building on these insights, we elaborate a numerical approach tailored to constrained time optimal collision free path planning and apply it to the slider–pusher system.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference24 articles.

1. More Than a Million Ways to Be Pushed. A High-Fidelity Experimental Dataset of Planar Pushing,2016

2. Feedback Control of the Pusher-Slider System: A Story of Hybrid and Underactuated Contact Dynamics,2020

3. Mechanics and Planning of Manipulator Pushing Operations;Int. J. Rob. Res.,1986

4. Planar Sliding With Dry Friction Part 1. Limit Surface and Moment Function;Wear,1991

5. Planar Sliding With Dry Friction Part 2. Dynamics of Motion;Wear,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flatness-based MPC using B-splines transcription with application to a Pusher-Slider System;2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3