Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil

Author:

Volino Ralph J.1

Affiliation:

1. Department of Mechanical Engineering, United States Naval Academy, Annapolis, MD 21402

Abstract

Boundary layer separation, transition, and reattachment have been studied on a new, very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 330,000. In all cases, the boundary layer separated, but at high Reynolds number the separation bubble remained very thin and quickly reattached after transition to turbulence. In the low Reynolds number cases, the boundary layer separated and did not reattach, even when transition occurred. This behavior contrasts with previous research on other airfoils, in which transition, if it occurred, always induced reattachment, regardless of Reynolds number.

Publisher

ASME International

Subject

Mechanical Engineering

Reference40 articles.

1. Aerodynamic Design of Low Pressure Turbines;Hourmouziadis

2. The Role of Laminar-Turbulent Transition in Gas Turbine Engines;Mayle;ASME J. Turbomach.

3. Unsteady Flow in Turbines;Sharma

4. Turbine Separation Control Using Pulsed Vortex Generator Jets;Bons;ASME J. Turbomach.

5. Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions;Volino;ASME J. Turbomach.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3