Turbine Separation Control Using Pulsed Vortex Generator Jets

Author:

Bons Jeffrey P.1,Sondergaard Rolf2,Rivir Richard B.2

Affiliation:

1. Air Force Insitute of Technology

2. Air Force Research Laboratory, Wright-Patterson AFB, OH 44135

Abstract

The application of pulsed vortex generator jets to control separation on the suction surface of a low-pressure turbine blade is reported. Blade Reynolds numbers in the experimental, linear turbine cascade match those for high-altitude aircraft engines and aft stages of industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets have a 30 deg pitch and a 90 deg skew to the free-stream direction. Jet flow oscillations up to 100 Hz are produced using a high-frequency solenoid feed valve. Results are compared to steady blowing at jet blowing ratios less than 4 and at two chordwise positions upstream of the nominal separation zone. Results show that pulsed vortex generator jets produce a bulk flow effect comparable to that of steady jets with an order of magnitude less massflow. Boundary layer traverses and blade static pressure distributions show that separation is almost completely eliminated with the application of unsteady blowing. Reductions of over 50 percent in the wake loss profile of the controlled blade were measured. Experimental evidence suggests that the mechanism for unsteady control lies in the starting and ending transitions of the pulsing cycle rather than the injected jet stream itself. Boundary layer spectra support this conclusion and highlight significant differences between the steady and unsteady control techniques. The pulsed vortex generator jets are effective at both chordwise injection locations tested (45 and 63 percent axial chord) covering a substantial portion of the blade suction surface. This insensitivity to injection location bodes well for practical application of pulsed VGJ control where the separation location may not be accurately known a priori.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3