Die Cracking at Solder (In60-Pb40) Joints on Brittle (GaAs) Chips: Fracture Correlation Using Critical Bimaterial Interface Corner Stress Intensities

Author:

Su Bingzhi1,Lee Y. C.1,Dunn Martin L.1

Affiliation:

1. Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309

Abstract

We study cracking from the interface of an In60-Pb40 solder joint on a brittle GaAs die when the joint is subjected to a uniform temperature change. Our primary objective is to apply and validate a fracture initiation criterion based on critical values of the stress intensities that arise from an analysis of the asymptotic elastic stress fields at the interface corner. In some regards the approach is similar to interface fracture mechanics; however, it differs in that it is based on a singular field other than that for a crack. We begin by determining the shape that the solder bump will assume after reflow when constrained by a fixed diameter wetting pad on the GaAs. To simplify the interpretation of the results, we focus on a class of solder bumps of various sizes, but with a self-similar shape. The approach, though, can be applied to different size and shape solder bumps. We then compute the asymptotic interface corner fields when the system is subjected to a uniform temperature change. The asymptotic structure (radial and angular dependence) of the elastic fields is computed analytically, and the corresponding stress intensities that describe the scaling of the elastic fields with geometry and loading are computed by axisymmetric finite element analysis. In order to assess the validity of fracture correlation using critical stress intensities, we designed and fabricated a series of test structures consisting of In60-Pb40 solder bumps on a GaAs chip. The test structures were subjected to uniform temperature drops from room temperature to induce cracking at the interface corner. From the tests we determined the relationship between the solder bump size and the temperature change at which cracking occurred. Not unexpectedly, smaller bumps required larger temperature changes to induce cracking. The observed scaling between solder bump size and temperature change is well described by the critical stress intensity failure criterion based on only a single parameter, the critical value of the mode 1 stress intensity, K1crn. Interestingly, this is because over a significant region, the mode 2 and constant terms in the asymptotic expansion cancel each other. This failure criterion provides the necessary machinery to construct failure maps in terms of geometry and thermomechanical loading. We conclude by describing how to apply the approach in more general and more practical settings that are possibly applicable to a wide range of problems in microelectronics, optoelectronics, and microelectromechanical systems packaging.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accounting for High Stress Gradient by a Modified Weibull Failure Theory;Journal of Engineering Materials and Technology;2007-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3