Three-Dimensional Paddle Shift Modeling for IC Packaging

Author:

Pei Chien-Chang1,Hwang Sheng-Jye21

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan

2. Mem. ASME

Abstract

The plastic packaging process for integrated circuits is subject to several fabrication defects. For packages containing leadframes, three major defects may occur in the molding process alone, namely, incomplete filling and void formation, wire sweep, and paddle shift. Paddle shift is the deflection of the leadframe pad and die. Excessive paddle shift reduces the encapsulation protection for the components and may result in failures due to excessive wire sweep. Computer-aided analysis is one of the tools that could be used to simulate and predict the occurrence of such molding-process-induced defects, even prior to the commencement of mass production of a component. This paper presents a methodology for computational modeling and prediction of paddle shift during the molding process. The methodology is based on modeling the flow of the polymer melt around the leadframe and paddle during the filling process, and extracting the pressure loading induced by the flow on the paddle. The pressure loading at different times during the filling process is then supplied to a three-dimensional, static, structural analysis module to determine the corresponding paddle deflections at those times. The paper outlines the procedures used to define the relevant geometries and to generate the meshes in the “fluid” and “structural” subdomains, and to ensure the compatibility of these meshes for the transfer of pressure loadings. Results are shown for a full paddle shift simulation. The effect on the overall model performance of different element types for the mold-filling analysis and the structural analysis is also investigated and discussed. In order to obtain more accurate results and in a shorter computational time for the combined (fluid and structural) paddle shift analysis, it was found that higher-order elements, such as hexahedra or prisms, are more suitable than tetrahedra.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electronic packaging and thermal management;Polymers in Electronics;2023

2. Encapsulation defects and failures;Encapsulation Technologies for Electronic Applications;2019

3. Three Dimensional Simulation of Filling Process for Stacked-Chip Scale Packages;Advanced Structured Materials;2019

4. Recent fluid–structure interaction modeling challenges in IC encapsulation – A review;Microelectronics Reliability;2014-08

5. Influence of PTH offset angle in wave soldering with thermal-coupling method;Soldering & Surface Mount Technology;2014-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3