Bernoulli–Euler Dielectric Beam Model Based on Strain-Gradient Effect

Author:

Liang Xu1,Hu Shuling1,Shen Shengping2

Affiliation:

1. e-mail:

2. e-mail:  State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

The theoretical investigation of the size dependent behavior of a Bernoulli–Euler dielectric nanobeam based on the strain gradient elasticity theory is presented in this paper. The variational principle is utilized to derive the governing equations and boundary conditions, in which the coupling between strain and electric field, strain gradient and electric field, and strain gradient and strain gradient are taken into account. Different from the classical beam theory, the size dependent behaviors of dielectric nanobeams can be described. The static bending problems of elastic, pure dielectric (nonpiezoelectric), and piezoelectric cantilever beams are solved to show the effects of the electric field-strain gradient coupling and the strain gradient elasticity. Comparisons between the classical beam theory and the strain gradient beam theory are given in this study. It is found that the beam deflection predicted by the strain gradient beam theory is smaller than that by the classical beam theory when the beam thickness is comparable to the internal length scale parameters and the external applied voltage obviously affects the deflection of the dielectric and piezoelectric nanobeam. The presented model is very useful for understanding the electromechanical coupling in nanoscale dielectric structures and is very helpful for designing devices based on cantilever beams.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3