Electromechanical response of boron nitride nanosheet reinforced nanocomposite beam: A finite element study

Author:

Bansod Pritesh V1,Gupta Madhur1ORCID,Gargama Heeralal2,Kundalwal Shailesh Ishwarlal1ORCID

Affiliation:

1. Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, MP, India

2. Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, WB, India

Abstract

The objective of the present study is to investigate the electromechanical response of a piezoelectric boron nitride nanosheet reinforced nanobeam accounting for the surface and the flexoelectric effects using finite element analysis. The finite element model was developed by using the size-based Euler–Bernoulli beam model, modified piezoelectricity theory, and Galerkin's weighted residual method. The boron nitride nanosheet-reinforced nanobeam was loaded with uniformly distributed load and point-loading conditions. Three common boundary conditions for beams such as clamped-free, simply supported, and clamped-clamped have been considered here. The electromechanical behavior of the boron nitride nanosheet reinforced nanobeam has been studied under the pure surface, pure flexoelectric, as well as combined surface and flexoelectric effects. It is observed that the integrated surface and flexoelectric effects are mainly responsible for enhancing the electromechanical performance of the nanobeam. For the thickness H = 20 nm, the maximum deflection of the nanobeam was reduced by ∼50% when both the flexoelectricity and surface effects are combined together for all the support conditions. Moreover, the circular cross-section beam becomes ∼30% stiffer than the rectangular cross-section beam under the integrated effect of surface and flexoelectricity under all loading conditions. Hence, the highly size-dependent surface and flexoelectricity must be explored in the accurate electromechanical behavior of the nanostructure. Furthermore, beam stiffness is highly influenced by the flexoelectric effect irrespective of the beam boundary conditions whereas the surface effect is largely reliant on the beam boundary conditions. This research work provides a methodology to design efficient boron nitride nanosheet reinforced nanostructures that may potentially be applied in the design and development of several nanoelectromechanical systems such as force and pressure-based nanosensors and actuators.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3