Motorized and Functional Electrical Stimulation Induced Cycling via Switched Adaptive Concurrent Learning Control

Author:

Casas Jonathan1,Chang Chen-Hao1,Duenas Victor H.1

Affiliation:

1. Syracuse University

Abstract

Abstract Cycling induced by functional electrical stimulation (FES) with motorized assistance is a rehabilitative approach for individuals with movement impairments. In this paper, an adaptive controller is designed for cadence tracking by switching across multiple muscle groups and an electric motor. The control design and analysis are based on a recently developed adaptive method called integral concurrent learning and an invariance-like tool to ensure stability of switched adaptive systems. A Lyapunov-based stability analysis for the overall switched rider-cycle system is segregated into two phases. During the first phase when sufficient learning has not been attained, which is quantified by a finite excitation condition, global asymptotic tracking and bounded parameter estimation are guaranteed. In the second phase, global exponential tracking and parameter convergence is ensured after the finite excitation condition is satisfied for all the subsystems within a finite time.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3