Prediction of Deswirled Radial Inflow in Rotating Cavities With Hysteresis

Author:

May David1,Chew John W.2,Scanlon Timothy J.3

Affiliation:

1. Rolls-Royce Canada, Montreal, PQ H9P 1A5 Canada

2. University of Surrey, Guildford, Surrey GU2 7XHUK

3. Rolls-Royce plc, Derby DE24 8BJUK

Abstract

Deswirl nozzles are sometimes used in turbomachinery to reduce the pressure drop when air is drawn radially inwards through a rotating cavity. However, this can lead to nonunique steady state solutions with operating conditions achieved depending on how the steady point is approached. In the present study, a novel transient, 1D model of flow in a rotating cavity has been created. The model was validated for two distinct cases: a smooth rectangular cavity and an engine-representative case. The transient model reproduced experimentally observed hysteresis, discontinuity in operating characteristics, and regions where no steady-state solution could be found. In the case of the engine-representative rig, part of the flow characteristic could not be obtained in testing. This was determined to be due to the interaction of the negative resistance region of the vortex and the flow-modulating valve characteristic. Measures that allow the full capture of the flow characteristic in rig testing are identified. These results show that inclusion of transient rotating flow effects can be important in turbomachinery air systems modeling. To the authors' knowledge, this is the first model to capture these effects.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3