Computational Investigation of Flow Control Methods in the Impeller Rear Cavity

Author:

Liu Guang1ORCID,Du Qiang1ORCID,Liu Jun1,Wang Pei1,Wang RuoNan1,Lian ZengYan1

Affiliation:

1. Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuan Road, Beijing 100190, China

Abstract

In typical median and small aeroengines, the air used to realize the functions such as cooling of turbine blades and disks, sealing of turbine cavities and bearing chambers, adjusting of rotating assembly axial load is normally drawn through the rear cavity of centrifugal impeller, so the thorough understanding of flow characteristics and pressure distribution and the proposal of the corresponding control methods in the cavity are the key to design the rational secondary air system. With an impeller rear cavity in a small turbofan engine as an object, the current study was dedicated to the investigation of flow control methods in the cavity. Two methods, namely, baffle and swirl-controlled orifice, were proposed to regulate the pressure loss and distribution in the cavity. Furthermore, the influence of geometry parameters of the two methods such as the length of baffle, the space between the baffle and rotating disk wall, the orientation, and radial position of swirl-controlled orifice was investigated. The CFD results show that the swirl-controlled orifice which could deswirl the flow is more effective in regulating the pressure loss and its distribution in cavity than baffle. The variation of the radial position of the swirl-controlled orifice had little influence on pressure loss but obvious influence on pressure distribution; therefore, decreasing the radial position could reduce the axial load on the rotating disk without changing the outlet pressure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3