To Study the Effect of Microstructures on Machinability of Inconel-718 Superalloy in Micro-Drilling Process

Author:

Singh Shashi Ranjan1,Vasavada Jitesh1,Mote Rakesh Ganpat1,Mishra Sushil Kumar1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India

Abstract

Abstract Nickel-based superalloys have been extensively used in the aerospace industry due to their excellent mechanical properties at elevated temperatures. The mechanical properties of the Inconel-718 majorly depend on its microstructure which can be controlled using thermomechanical treatments. Machining of the heat-treated Inconel-718 component is very difficult due to very high hardness. This paper investigates the relationship between the material microstructure developed through a thermomechanical process and the machinability through micro-drilling of Inconel-718. In this study, a wide range of microstructures with hardness ranging from 179 HV to 461 HV was achieved by different thermomechanical and heat-treatment processes. Flank wear, thrust force, and burr height analysis were carried out to understand the machining behavior after micro-drilling. Electron back scattered diffraction (EBSD) technique was used to characterize the microstructure. No correlation between grain size and thrust force was observed. However, a clear trend between thrust force and hardness was established. It was also observed through misorientation analysis that the machined surface deforms significantly with material hardness.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3