Sequential Laser Mechanical Microdrilling of Inconel 718 Alloy

Author:

Okasha M. M.1,Mativenga P. T.1,Li L.1

Affiliation:

1. Manufacturing and Management Group, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M60 1QD, UK

Abstract

Mechanical microdrilling of nickel-based aerospace alloys suffers from premature drill breakage due to the fragile nature of the microdrill. Additionally, burr size reduction in both macro- and microscales has become one of the key problems in the drilling process. This paper presents a new method to microdrill Inconel 718 alloy using laser followed by mechanical drilling (sequential drilling). The aim of this research was to understand and evaluate the capability of using sequential laser mechanical drilling method as an effective and efficient method in drilling difficult-to-cut metals. Two new approaches were developed, namely, a two-step process of laser pilot drilling followed by twist drilling and a three-step process of laser pilot hole drilling followed by mechanical pilot drilling and then twist drilling. The holes produced by the new approaches were compared with those by mechanical microdrilling (pilot drilling and then twisting drilling). The results show that mechanical drilling eliminates the laser drilling defects. Furthermore, while large nonuniform burrs with attached cap were found in pure mechanical drilling, 75% reduction in burr size was achieved with the complimentary sequential drilling technology. Additionally, when compared with purely mechanical microdrilling, the new drilling method resulted in 240–430% tool life increase. Thus, the new drilling method presents an opportunity for industry to extend tool life and decrease burr.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3