Aerodynamic Loading Distribution Effects on Off-Design Performance of Highly Loaded LP Turbine Cascades Under Steady and Unsteady Incoming Flows

Author:

Berrino Marco1,Simoni Daniele1,Ubaldi Marina1,Zunino Pietro1,Bertini Francesco2

Affiliation:

1. Università di Genova, Genova, Italy

2. GE AvioAero, Rivalta, Italy

Abstract

The present work is part of a continuous cooperation between GE AvioAero and the University of Genova aimed at understanding the detailed flow physics of efficient highly loaded LPT blades for aeroengine applications. In this paper the effects of the aerodynamic loading distribution on the performances of three different cascades with the same Zweifel number have been experimentally investigated under steady and unsteady incoming flow conditions. Measurements have been carried out for several Reynolds numbers (in the range 70000<Re<300000) with an incidence angle variation of ±9°, in order to cover the typical realistic LP aeroengine turbine working range on design and off-design conditions. Profile aerodynamic loadings and total pressure loss coefficients have been evaluated for the different cases. Efficiency data clearly highlight that at nominal incidence an aft loaded cascade provides the lowest profile losses when the boundary layer is attached to the wall, as it occurs in the unsteady case or at high Reynolds numbers. Only at the lowest Reynolds number in the steady case, a front loaded profile is preferable since it helps to prevent a laminar boundary layer separation. Moreover, the aft loaded profile has also shown a better robustness to incidence angle variation, both for the steady and the unsteady inflow conditions. Indeed, the growth of profile losses with incidence is weaker for the aft loaded cascade with respect to the front and the mid loaded ones. However, irrespective of the loading distribution the loss trend vs incidence angle has been found to be completely different between the steady and the unsteady operations. Results in the paper give a clear overview of the impact of the loading distribution on profile losses as a function of Reynolds number, as well as a detailed view of the influence due to the loading characteristics on incidence robustness under the realistic unsteady inflow case.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3