Adaptive prediction of turbine profile loss and multi-objective optimization in a wide incidence range

Author:

Wang Jiahui12,Yin Zhao12ORCID,Zhang Hualiang123ORCID,Tang Hongtao1,Xu Yujie12,Chen Haisheng123ORCID

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, P.R. China

2. University of Chinese Academy of Sciences, Beijing, P.R. China

3. Nanjing Institute of Future Energy System, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Nanjing, P.R. China

Abstract

The loss prediction model plays a crucial role in turbine design for fast performance prediction and a shorter design cycle. Owing to the design requirements of high-efficiency turbines under a wide range of operating conditions, the loss prediction of the off-design incidence is increasingly important. However, limited by the modeling database and traditional modeling methods, the accuracy and adaptability of the existing off-design incidence loss predictions are insufficient. This paper proposes an adaptive prediction method based on machine learning and develops a multi-objective optimization process based on adaptive prediction. Machine learning (neural network) is applied for more flexible and accurate loss predictions over a wide incidence range. Compared with two classic loss models (Ainley and Mathieson model and Benner model), the adaptive prediction model significantly improves the ability to predict turbine profile loss with off-design incidence, particularly under large incidence conditions. The prediction root mean square error can be reduced by up to 73.8% (absolute value: 0.063). Furthermore, the multi-objective optimization method based on adaptive prediction is applied to the aerodynamic optimization of the original cascades with a wide incidence range. The weighted objective of the optimized cascade (Cri = 0.211) is reduced by 8.7% compared with that of the original cascade (Cri = 0.231). Within the range of full incidence angle (−40° to +20°), the variation of profile loss is reduced by 24.0%. This study is a preliminary exploration aimed at establishing an accurate turbine loss prediction system based on machine learning, the feasibility, and superiority of this approach are confirmed.

Funder

Beijing Municipal Natural Science Foundation Project

National Science Fund for Distinguished Young Scholars

National Science and Technology Major Projects of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3