Analysis and Optimization of Parabolic Trough Solar Collector to Improve Its Optical Performance

Author:

Goel Anubhav1,Mahadeva Rajesh1,Manik Gaurav1

Affiliation:

1. Indian Institute of Technology Roorkee Department of Polymer and Process Engineering, , Roorkee, Uttarakhand 247667 , India

Abstract

Abstract This article presents a detailed analysis of parameters that affect the optical performance of parabolic trough solar collector (PTSC) and proposes a suitable method to optimize the relevant ones. A mathematical model is drafted and simulated for known geometry and parameters of industrial solar technology (IST) PTSC. The model was evaluated for three different configurations of IST PTSC involving distinct components. A comparison between the experimental results and model estimations indicates a maximum root-mean-square error (RMSE) of 0.7997, confirming the reliability of the proposed model. The influence of variations in absorber diameter (Dao), length (lrc), width (wrc), and focal length of PTSC (frc), along with direct normal incidence (In), dirt factors (ξdm, ξdhc), and angle of incidence (θ) on the optical performance of PTSC has been investigated. It was established that variation in mentioned parameters exhibits both positive and negative impacts on optical performance. After careful analysis, lrc, wrc, frc, Dao, and θ were chosen for optimization as it was perceived that by varying these in a reasonable range, an optimal set of parameters could be obtained that maximize the absorbed solar irradiation for a given PTSC. Genetic algorithm (GA), particle swarm optimization (PSO), and African vultures optimization algorithm (AVOA) are utilized to estimate the optimal values of parameters. Significant improvement in absorbed solar irradiation (∼16%) is registered with optimized parameters, suggesting that benefits can be obtained if a study is performed prior to producing PTSC modules for an application.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3