Study of the Optical Impact of Receiver Position Error on Parabolic Trough Collectors

Author:

Zhu Guangdong1

Affiliation:

1. Engineer IV, Ph.D. Concentrating Solar Power Program, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 e-mail:

Abstract

A newly developed analytical optical approach—first-principle OPTical intercept calculation (FirstOPTIC)—is employed to study the optical impact of receiver position error on parabolic trough collectors. The FirstOPTIC method treats optical error sources the way they are typically characterized in laboratory measurements using a geometrical or optical interpretation. By analyzing a large number of cases with varying system parameters, such as overall system optical error and the collector's geometrical parameters, a practical correlation between actual measurement data and its corresponding error-convolution approximation for receiver position error is established from parametric study; the correlation enables a direct comparison of receiver position error to the sun shape and other optical error sources (such as mirror specularity and slope error) with respect to the collector optical performance. The effective coefficients that define the correlation of actual measurement data and its error-convolution approximation for receiver position error are also summarized for several existing trough collectors; these make it convenient to characterize the relative impact of receiver position error compared with other optical error sources, which was not straightforward in the past. It is shown that FirstOPTIC is a suitable tool for in-depth optical analysis and fast collector design optimization, which otherwise require computationally intensive ray-tracing simulations.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. Bold, Decisive Times for Concentrating Solar Power;Sol. Today,2010

2. Different Tracking Error Distributions and Their Effects on the Long-Term Performances of Parabolic Dish Solar Power Systems;Int. J. Sol. Energy,1994

3. Theoretical Derivation of Heliostat Tracking Errors Distribution;Sol. Energy,2008

4. An Improved Method for Characterizing Reflector Specularity for Parabolic Concentrators,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3