Linear Feedback Control of Position and Contact Force for a Nonlinear Constrained Mechanism

Author:

McClamroch H.1,Wang D.2

Affiliation:

1. Department of Aerospace Engineering, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Mich. 48109-2140

2. School of Electrical and Electronic Engineering, Nanyang Technological Institute, Nanyang, Singapore 2263

Abstract

A feedback control problem for a constrained mechanism is formulated and solved. The mechanism is controlled by forces applied to the mechanism which are to be adjusted according to a linear control law, based on feedback of the positions and velocities of the mechanism and feedback of the constraint force on the mechanism. The control objective is to achieve accurate and robust local regulation of the motion of the mechanism and of the constraint force on the mechanism. Derivation of a suitable control law is significantly complicated by the nonclassical nature of the differential-algebraic model of the constrained system and by the nonlinear characteristics of the model. The control design approach involves use of a certain nonlinear transformation which leads to a set of decoupled differential-algebraic equations; classical control design methodology can be applied to these latter equations. An example of a planar mechanism is studied in some detail, for two different regulation objectives. Specific control laws are developed using the described methodology. Comparisons are made with a closed loop system, where the control law is derived without proper consideration of the constraint force. Computer simulations are presented to demonstrate the several closed-loop properties.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3