Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades

Author:

Bruschewski Martin1,Scherhag Christian2,Schiffer Heinz-Peter2,Grundmann Sven3

Affiliation:

1. Institute of Gas Turbines and Aerospace Propulsion, Technische Universität Darmstadt, Darmstadt 64287, Germany e-mail:

2. Institute of Gas Turbines and Aerospace Propulsion, Technische Universität Darmstadt, Darmstadt 64287, Germany

3. Institute of Fluid Mechanics, University of Rostock, Rostock 18051, Germany

Abstract

A study examining the internal cooling of turbine blades by swirling flow is presented. The sensitivity of swirling flow is investigated with regard to Reynolds number, swirl intensity, and the common geometric features of blade-cooling ducts. The flow system consists of a straight and round channel that is attached to a swirl generator with tangential inlets. Different orifices and 180-deg bends are employed as channel outlets. The experiments were carried out with magnetic resonance velocimetry (MRV) for which water was used as flow medium. As the main outcome, it was found that the investigated flows are highly sensitive to the conditions at the channel outlet. However, it was also discovered that for some outlet geometries the flow field remains the same. The associated flow features a favorable topology for heat transfer; the majority of mass is transported in the annular region close to the channel walls. Together with its high robustness, it is regarded as an applicable flow type for the internal cooling of turbine blades. A large eddy simulation (LES) was conducted to analyze the heat transfer characteristic of the associated flow for S0=3 and Re=20,000. The simulation showed an averaged Nusselt number increase of factor 4.7 compared to fully developed flow. However, a pressure loss increase of factor 43 must be considered as well.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3